首页> 外文OA文献 >Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
【2h】

Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging

机译:新型分段堆叠自动编码器,可有效降低高光谱成像中的维数并提取特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stacked autoencoders (SAEs), as part of the deep learning (DL) framework, have been recently proposed for feature extraction in hyperspectral remote sensing. With the help of hidden nodes in deep layers, a high-level abstraction is achieved for data reduction whilst maintaining the key information of the data. As hidden nodes in SAEs have to deal simultaneously with hundreds of features from hypercubes as inputs, this increases the complexity of the process and leads to limited abstraction and performance. As such, segmented SAE (S-SAE) is proposed by confronting the original features into smaller data segments, which are separately processed by different smaller SAEs. This has resulted in reduced complexity but improved efficacy of data abstraction and accuracy of data classification.
机译:作为深度学习(DL)框架的一部分,最近提出了堆叠式自动编码器(SAE),用于高光谱遥感中的特征提取。借助深层中的隐藏节点,可以实现高级抽象,以减少数据,同时保留数据的关键信息。由于SAE中的隐藏节点必须同时处理来自超立方体的数百个特征作为输入,因此这增加了过程的复杂性,并导致有限的抽象和性能。这样,通过将原始特征面对较小的数据段来提出分段的SAE(S-SAE),这些数据段由不同的较小的SAE分别处理。这导致降低了复杂性,但提高了数据抽象的效率和数据分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号